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immediately to and those departing Q3 leave the network. For different

parameter settings, the network is simulated and the sojourn times at each

of the queues are recorded. Due to the structure of the network, a simple

simulation which correctly models the network can be constructed. It is

known from Simon and Foley (1979), that the sojourn times of a customer in

Q and Q3 are dependent. It is shown, that, except for extremely large

sample sizes, 5000, that the correlation between the sojourn times in Q'

and Q is not significant. However, in the case of 5000 observations, this

correlation is shown to be significantly greater than zero for certain

parameter settings. Finally, the sample total sojourn time distribution is

compared to one assuming independence of the sojourn times at each of the

queues. It is shown that the sample distribution and the total sojourn time

distribution assuming independence are not significantly different, except

for p=O.
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CHAPTER 1

INTRODUCTION

1.1. Queueing Networks.

1.1.1. Single Queueing System.

In a queue one has an entity capable of performing service - a

service system. The service is provided to a stream of customers. The

service system has m servers if the system can service a maximum of m

customers simultaneously. The time to service a given customer is a

random variable. The sequence of service times is called the service

process. The demand process is usually specified by the length of the

interval between consecutive arrivals. Each interval is a random

variable and the sequence of intervals is called the arrival process.

The described system is a single queueing system and is referred to as

a queue (figure 1.1).

Customers that arrive for service when the service system is busy

(I.e., all m servers are busy.) may either wait their turn to be served,

depart immediately, or wait some amount of time then depart. We assume

that every arriving customer waits until served. (I.e., there are no

early departures.) The maximum number of customers that are allowed to

wait for service is the queue capacity. We assume the queue capacity is

infinite. The order in which customers are served is the queue discipline.

While many disciplines can be and have been studied we will assume that

customers are served in the order of their arrival. Such a discipline is

called First-Come-First-Served (FCFS).

We assume that the intervals between consecutive arrivals are



2

* Departure Process
Arrival Process

Figure 1.1. A Single Queue with mi Servers
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mutually independent and identically distributed, a renewal process.

Such a process is called a GI process. A special case of the CI

process is a Poisson process, designated as an M process, in which the

intervals have an exponential probability distribution. The mean time

between arrivals is designated as X71 .

The service times of the customers are mutually independent and

identically distributed random variables. Such a process is denoted

by GI. A special case of the GI process is designated as an M process,

in which the service times are exponentially distributed random variables.

The mean service time for each of the m servers is usually designated as

-1

GI/GI/m will denote a queue when the first GI implies a renewal

arrival process, the second GI a renewal service process, and the m the

number of identical servers. These queues will have FCFS queue

discipline and infinite queue capacity. Thus, K/H/m denotes a queue

with a Poisson arrival process with mean interarrival time X- , a service
-l

process with exponential distribution with mean p- , and m identical

servers.

1.1.2. Queueing Networks.

A queueing network is an aggregation of queues. For a survey on

queueing networks see Disney (1975). The network's queues are intercon-

nected by arcs on which customers travel. Customers that arrive from

outside the network are called exogenous arrivals. Customers which

travel from a queue to itself are called feedback customers. Customers

which leave a network from a queue are called departures. All customers

*k _ _ _ _ _ _ __ _ __ _ _ _ _ _ _ _ _j
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entering a queue (i.e., the exogenous arrivals plus the arrivals from

other queues) are called inputs. All customers leaving a queue are

called outputs.

1.2. Sojourn Times in Queueing Networks.

For a single queue a customer's sojourn time consists of the time

he spends waiting for service plus the time he spends receiving service.

For the M/M/1 queue, with an arrival process with mean A-1 and a service

-1
process with mean U- , the sojourn time, S, of a customer has the

distribution

P{S < t = 1 - e- (P- X)t

when the queue is in equilibrium, Kleinrock {(1973), pg. 2021.

We consider a queueing network with N queues, QI .QN" A route

I is a sequence of queues a customer visits. We let L-{l1 ,t 2,... be

the sets of all possible routes. Suppose a customer takes the route

£ - {Qil'"QtMOO) 1. Let Si, k = ,.,m(L), be the customer's

sojourn time at Q. Let Ti , J - i,-,m()-l, be the customer's
k j

transition time from Qi to Qij+ 1  Then the customer's total sojourn

time is given by

m(L) m(l)-i
S - E S + E T. (2.1)

k- i k j-l iJ

The conditional distribution of the customer's total sojourn time given

he takes route Z is given by

pm(t) s  m(Jj-l_

P-S tit) P{ I S + E Ti tIt) (2.2)
k-i 'k Jmi1
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provided p(l) > 0 where p(l) is the probability of the customer taking

route X. Multiplying (2.2) by p(l) and summing over all I e L such that

p(L) > 0 yields

m(4) m(4-
P{S < t) - Z P( Z S + E Ti < tl4}p() (2.3)

UcL k1l ik i.-i J
p (t) >0

the total sojourn time distribution.

1.3. The Three Queue Network.

We consider a specific network which consists of three queues,

QIPQ2,Q3, figure 3.1. The exogenous arrivals to Q1 form a Poisson

process with mean A - . For k = 1,2,3, Qk consists of a single

server who services customers according to an exponential
-1

distribution with mean u 1. Outputs from Q1 go immediately to Q2 with

probability p or immediately to Q3 with probability (1-p). Outputs

from Q2 go immediately to Q3 with probability 1. All outputs from Q3

are departures.

The following two observations concern the total sojourn time

distribution in the three queue network. First, transitions from one

queue to another are instantaneous. Second, there are only two routes

a customer may take. If I is the route Q19Q2 ,% and is the route

Q1,Qy' then the total sojourn time, S, is given by

S 1 + S2 + S3  with probability p
S n

S1 + S3  with probability (1 - p) (3.1)

where Si is the sojourn time at Qi. From equation (2.1) the conditional



6

i- k
.!l

pi

.TI Figure 3.1. The Three Queue Network
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sojourn time distributions are

P{s < tjt I P{s + S 2 + s3  t1

and

SP{ < tS 2  - P(S1 + S3 ! t 2J.

Then since p(I1) p and p(L2) - 1 - p, the total sojourn time

distribution is

P{S < t - pP{S 1 + S2 + S3 . til 1 } + (1 - p)P{S 1 + S3< tt2 - (3.2)

The difficulty with evaluating equation (3.2) is that given that a

customer takes the route 1l, his sojourn times in Q and Q3 are not

independent. This will be discussed in detail in section (2.5). It is

this dependence which makes determining the total sojourn time distribu-

tion difficult.

1.4. Purpose.

This thesis is concerned with a simulation study of the three queue

network. The dependence of a customer's sojourn times in Q and Q3

given he takes the route 1l, will be analyzed.

1.5. Suumary of Results.

It is shown that for sample sizes of 1000 the correlation between

S1 and S3 is not significantly different from zero. Further, the

sample distribution of the total sojourn time, taken from the 1000

observation, is not significantly different from a distribution assuming

S2 and S3 are mutually independent. Thus for applied modeling

3I
i7
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purposes one can assume that S1 and S3 are uncorrelated and independent.

1.6. Organization.

This thesis consists of six chapters and two appendices. Chapter 2

consists of sojourn time and queue length results in Jackson networks.

The major result, with respect to this thesis, is the theorem of Simon

and Foley section (2.5) in which S and S3 are shown to be dependent

given the customer takes route LlV In Chapter 3 the three queue network

is put into the Markov framework. Once put into that structure, many

of the properties of the network become apparent and thus, can be used

for setting up the simulation.

Theorem (3.5) is of importance to the simulation study. Let

Y = [Yt; t > 0) be the queue length process at any t > 0 and

Z { {Z ; n c N) be the queue length process just before the nth arrivaln

to Q V For computing the equilibrium sojourn time of a customer the Z

process must be in equilibrium. Theorem (3.5) shows that if Y has an

equilibrium distribution at time t, then the next arrival to Q1 does

not see the equilibrium distribution of Z. Thus, in simulating the

network to find a customer's equilibrium sojourn time one must generate

the equilibrium distribution of Z and then immediately add the tagged

customer. Further, if the initial distribution is generated according

to the equilibrium distribution of the Y process and the network is

simulated until the next arrival to Q19 then this customer does not see

the equilibrium distribution of the Z process. Thus, this customer's

sojourn time is not the sojourn time of a customer who finds the network

in equilibrium.

*1



In Chapter 4, the method of the simulation is explained. That

chapter explains the initialization of the simulation and the next event

generator. Chapter 5 contains the analysis of the simulation. Two

basic tests are done. First, a test is made to determine whether the

correlation between S1 and S3 is significant. The second test determines3I
whether the total sojourn time distribution is statistically different

from a distribution assuming S1,S2, and S3 are mutually independent.

Chapter 6 contains the conclusions.

Appendix Al contains flowcharts, a source listing of the program,

and discriptions of the programs. Appendix A2 contains listings of the

output. These listings consist of expected values and variances of

sojourn times, correlation coefficients, and plots of the distributions.

Chapters are assigned an Arabic number. Each chapter is divided

in sections and sections, when needed, into subsections. Sections are

labeled by two Arabic numbers, one for the chapter and one for the

section. Thus, the third section of Chapter 2 would be labeled 2.3. If

this section has subsections, the second subsection would be labeled

2.3.2. Theorems, definitions, equations, tables, and figures within a

section are labeled nIn 2, where n1 and n2 are Arabic numbers. Inside a

chapter, the chapter number is suppressed. Thus, one would refer to

Theorem (2.1) from inside Chapter 3, but Theorem (3.2.1) from outside

Chapter 3.



CHAPTER 2

QUEUE LENGTH AND SOJOURN TINE RESULTS IN JACKSON NETWORKS

2.1. Jackson Networks.

A Jackson network consists of N queues, QI,"-,QN . For each n,

n - 1,-",N, Qn consists of mn identical servers. Servers at Qn service

customers according to an exponential distribution with mean P-1 . The
n

queue discipline at Qn is FCFS and its queue capacity is infinite.

Exogenous arrivals to Q form a Poisson process with mean X-1 . Upon
n n

completing service at Q the departing customer goes instantaneously to
n

Qk' k - 1,-,N, with probability enk or leaves the system, never to
N

return, with probability pn= 1- Z 0 .k-l nk

The matrix 0 with elements E0jk, J,k-,'",N, is substochastic since

for each J,j -,'.',N,

N

k E i k < 1

Form a matrix G by appending to 9 an extra row and an extra column as

follows. The element in column N +1 for row J, j=I,...,N, is p . The

elements in row N+1 are given by

( 0 forJ j -,--.,N

I forJ -N+1.

The matrix,

10

Ind



!1..

11 012 0 IN Pi

021 022 *00 02N P2

0 S. a 6 0

* 0 * 0
0 0 0&
8ni 8n2 * NN PN

0 0 o0o 0 1

We will denote by ) the row vector (AIV'.',XN) , by m the row vector

(ml,...,mN), and by y the row vector ( ,.-,jm). if is the

probability that initially, t =0, there are k customers in QI,...,kN1!
customers in QN' The quintuplet N, X, m ', 0 plus the initial distribu-

tion 1, completely specifies the Jackson network. We will denote

a Jackson network specification by JN - (N, X, m, V, 0) with initial

distribution wk,...,kN. When the initial distribution is not relevant

it will be deleted from the specification.

Definition 1.1. A Jackson network specified by JN- (N, X, m, 0)

is open if for every j e {1,'..,N} the probability of never departing

the network starting from j is zero.

Let JN= (N, A, m, i, 0) specify a Jackson network. If the input

process to Qn , noI,...,N, has rate rn , then when the network is in

equilibrium, (I.e., the joint queue length distribution is time invariant.)

N
n n eknrk (1.2)

This equation is known as the traffic equation. An intuitive explanation

for this equation is as follows. In equilibrium it is known that the
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rate of flow into a queue equals the rate of flow out of a queue. Thus,

for k-l,".,N, the rate of flow out of Qk is rk. So the flow into Q

becomes the portion of flow out of Qk' k = 1,-..,N, which goes to Qno

eknrk , plus the rate, A n, of Q ns exogenous arrival process yielding

equation (1.2). In matrix form equation (1.2) becomes

r - x + re (1.3)

where r = (rl,-.,rN).

Let JN= (N, X, m, V, 0) specify an open Jackson network. Melamed

(1976) shows that equation (1.3) has an unique solution given by

r - x ; on (1.4)

where 0 is the idenity matrix.

Let JN= (N, X, m, v, 0) specify an open Jackson network. Jackson

(1957) derived the equilibrium distribution for the queue length vector

k (kl,' '',kN) where kip i-1,'",N, is the number of customers at Qi"

Define P(n) (n 1,.,No kf-i0,l, - ) by the following equations

P (pn ) (rn)k /k1 k 0,.'.,m

k (1.5)

(n) (-)

p 0) (r n/pn)k/Mnlm n kzo m n + 1,'-

where P(n) can be determined by the equations ; P(n) 1. Jackson shows
0 knO k

that the equilibrium distribution of the queue length vector in an open

Jackson network is given by

Pk a p(1) ... p ()k

k k 1  kN

provided that r n < m n Pn for n-i1,"* ,N.
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2.2. Acyclic Jackson Networks.

A Jackson network is said to be acyclic if it has the additional

property that once a customer departs from Qn' n =1,..,N, he may never

return to Q The following result is concerned with the switching

matrix, 0, of an acyclic Jackson network.

Theorem 2.1. Let JN= (N, X, m, ii, 0) specify a Jackson network.

Then JN specifies an acyclic Jackson network iff 0 can be put into upper

triangular form.

Proof. (4) Suppose 0 is a switching matrix of an acyclic

Jackson network. Then there is a row iI consisting of all zeros. For

if not, for each i E {1,-,N} there would exist an n c {1,2,..} such

that 0 > 0. Thus 0 is not the switching matrix of an acyclic Jackson-n

network. Similarly, there exists a column j of 0 consisting of all zeros.
Form amatrixth an ~th column of the

Form a matrix 01 by deleting the iI row and

matrix 0. Then 0 has a row i2 consisting of all zeros by the same

reason as above. Continuing in this manner we get matrices 0k with row

1k+l consisting of all zeros. Let 0 be the matrix formed by the row

and column ordering iN,'"i 1 . Then 0 is in upper triangular form.

(=) Suppose 0 is in upper triangular form. Then for each

i .{,-,N), 0 1 0 for all n > 1. o

Using this result it follows that an acyclic Jackson network is an

open network.

Theorem 2.2. Let JN- (N, X, m, 1j, 0) specify an acyclic Jackson

network. Then JN specifies an open network.

Proof. Consider the matrix 0 formed from the matrix 9 as in

equation (1.1). Since 0 is in upper triangular form it follows that for

II

- i__ _
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any i, i c (1,-" ,N}, that

-N+l-i0
iN+l

The three queue network, section (1.3), is an acyclic Jackson network

with switching matrix

0 0 0 1 (2.1)

Since the three queue network is an open network, it follows that in

equilibrium the solution to the traffic equation (1.3) is given by

equation (1.4). Thus, it follows that

r C
n=0

n

-(X,0,0) (n0 0(1

by~~~~ eqaio01.)a

0 2 0

~lc1 ,k2,k3  1- /p( /i ) 1 1~i 3 (/1 3  23

(A,0,0- 091

0'., 0



$
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for klk 2,k3 - 0,1,..., provided A/pl, PA/11 2 /9i3 < 1.

2.3. Sojourn Times in Acyclic Jackson Networks.

Let JN- (N, A, m, p, 0) specify an acyclic Jackson network in

equilibrium. Suppose a customer, c, takes the route X - {11 ,-.

The probability that c takes the route I is

p N z E N(3.1)
1 2 M-1lm m

So by equation (1.3.3), c's total sojourn time distribution is given by

P{S<tl= L Z" PIS +S < t I 0w. 1 0 2 " p (3.2)
UL 11 1m N I1 2 1m-1lIm Im

i=1 2,i

If for each route £ = P1,I s L, the S~ , i=l,-.,m, are mutually

independent random variables then the total sojourn time distribution is

given by

P{S<t}= E (F *...*F£)e 1 8i£ "' '0 _ it
p 1 (3.3)

m x 12 m-m m
i=1

where Fi is the distribution of Si, i- (1,-..,N), and F * G denotes the

convolution of F and G.
I

Let JN= (N, X, 1, , 0) specify an acyclic Jackson network in

equilibrium where 1- (l,..,l). Beurler and Melamed (1979) show that

the traffic on the arc connecting Qi, and Qj, iJ - 1,...,N, forms a

Poisson process with mean (r i Ej)- , and is independent of all other

.m 1!... .- - ~ " - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i
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traffic in the network. Thus, the input process to Qj, J - 1,..-,N, is

the superposition of mutually independent Poisson processes. Therefore,

the input process to Q is a Poisson process with mean

-1N -1
r - =0(A + Er~e 1 ,) , (cf. ginlar (1975) pg. 87). Further, the inputSi=l i ij

process to Qj, j - 1,'--,N, is independent of its service process. So it

follows that Qj, j = 1,-',N, is a M/M/1 queue. It follows from equation

(1.3.1) that Qj's sojourn time distribution is exponential with mean

(j - r . Thus, if for each route I = { 1,.',t, the S
1 m.

i l,'.,m, were mutually independent, the total sojourn time distribu-

tion would be the sum of convolutions of exponential distributions.

In general the S are not mutually independent random variables.

Thus, equation (3.3) does not hold. However, there are some types of

networks in which equation (3.3) holds.

2.4. Sojourn Times in Tandem Queues and Tree-like Networks.

JN= (N, X, m, p, 0) specifies a Jackson network of tandem queues,

figure 4.1, if

01 0
0 s

0 0 *
0- 0

1
0

0 0

and A - (X,0,. .. ,O). JN specifies a tree-like network, figure 4.2, if

for any i,j c {1,...,N}, there is at most one sequence {i,kl,.".k n j }

such that 0ik ."0 > 0.
AI k i
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Q4

Figure 4.2. A Tree-like Network
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Let JN= (N, A, 1, p, 0) specify a Jackson network of tandem queues

in equilibrium. Since the only route, £, a customer, c, may take is

I- (1,''*,N}, equation (1.2.3) becomes

P{S < t) - P{S1+-..
4SN < }. (4.1)

Reich (1963) shows that the Si, i = 1,"',N, are mutually independent.

Thus, from equation (3.3)

P{S < tI = (Fl*-*FN)(t)

where each of the Fi, i = 1,-'',N, are exponential distributions with

mean ( - A)

Melamed (1979) extends Reich's result to single server tree-like

networks. Let JN (N, X, 1, u, 0) specify a tree-like Jackson network

in equilibrium. Melamed shows that for each route, k {-i,'",£ } L,m

the S are mutually independent and thus the total sojourn time

distribution of a customer is given by equation (3.3).

So far we have examined Jackson networks of tandem queues and

Jackson tree-like networks with single server queues. What happens if

these networks have queues with multi-servers? Burke (1968) shows that

for two multi-server queues in tandem, the sojourn times of a customer

in the first queue and the second queue are independent. However, mutual

independence of the sojourn times of a customer is not the case when one

tries to extend the result to Jackson networks of multi-server tandem

queues of three or more queues.

Burke (1969) constructs a network of three queues in tandem, see



--

2F

Figure 4.3. The Burke Network

1I
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figure 4.3, such that the sojourn times at the separate queues are not

mutually independent. Let JN- (N, A, m, p, 0) specify a Jackson network

of tandem queues in equilibrium with N- 3, m -(1,2,1), and V i(p~p,p).

Let a customer, c, have a sojourn, s1 , in Q1 . Let s, be large enough as

to guarantee the arrival of another customer to Q, before c's departure

from Q V Burke shows that c's expected sojourn time in Q3 conditioned

on sI can be bounded below by 1/8U + 1/p. However, the unconditioned

expected sojourn time of a customer at Q3 is given by X/X+p • I/p+ 1/u.

Thus, choosing )t/X+p < 1/8 the conditional and unconditional sojourn

times at Q3 cannot be equal proving the dependence of sojourn times at

Q1 and Q3

2.5. Sojourn Times in the Three Queue Network.

Simon and Foley (1979) show that for their three queue network in

equilibrium, section (2.2), the sojourn times of a customer in Q and

Q3 are dependent given that the customer takes the route Q1 ,Q2 ,Q3 . Their

result is shown in a manner similar to Burke (1969) discussed in the

previous section.

Simon and Foley show that for any fixed r > 0, p l and s can be

chosen so that

E{S 31S1 - s) > r.

The unconditioned expected sojourn time of a customer in Q3 is (P3- X)-

Choosing r > (p3 -)-1 one obtains

E{S 3 1S1  > , ES1

proving the dependence of SI and S
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The following is an intuitive explanation for the dependence of S1

and S3. In the three queue network a customer, c, may either go from

Qto Q3 directly or from Qto then to Q3" The number of customers,

n., at c's departure time, t, from Q1 depends on Si. If c goes to

from Ql, some of the n1 customers may bypass c by going directly to Q3"

Thus, when c arrives at Q39 the queue length there, n3, is dependent on

n1. Then since S3 is dependent on n3 n3 on n1 , and n1 on S1. $3 is

dependent on S

2.6. Summary.

In section (2.1) we defined a Jackson network and discussed the

switching matrix 0. Further, the traffic equation r = x + re was

defined and the solution to this equation for an open network was

discussed. In section (2.2) we defined an acyclic network. We showed

for acyclic networks 0 could always be put in upper triangular form.

Thus, an acyclic network is an open network. In section (2.4) we

discussed sojourn times in Jackson networks of tandem queues and Jackson

tree-like networks. For the cases of networks of single server queues or

two queues in tandem we had mutual independence of sojourn times. How-

ever, this result could not be extended to these networks in general.

Finally, in section (2.5), Simon and Foley showed that for the three

queue network we did not have independence of the sojourn times.

In the next chapter we discuss some properties of the three queue

network's queue length process which are needed in the construction of

the simulation.
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CHAPTER 3

PROPERTIES OF THE QUEUE LENGTH PROCESS

3.0. Introduction.

In this chapter we will study four vector valued queue length pro-

cesses, Y, X, X, Z. The process Y - {Y t > 0} is the queue length (at

each server) process at t e R. The process X - {X n 0,1,2,-"- is

the queue length process at the time of the nth jump in the Y process.

The process X : n = 0,1,2,'''} is the queue length process at the

time of the nth jump in a Poisson process that is independent of Y. The

process Z = {Z n = 0,1,2,-"} is the queue length process at the timen

of the nth arrival (Tn ) to the network.

We will:

1. define the Y process and discuss a few of its properties

(section 3.1);

2. define the X process, show that it is a Markov chain, find its

one step transition probabilities and from these find the infinitesimal

generator of Y (section 3.2);

3. define a process X that is useful in the study of the queue

length process embedded at arrival times (i.e., Z). We show that R and

Y have the same invariant distributions;

4. define the queue length process embedded at arrival times and

show it has the same invariant distributions as X (and thus of Y);

5. show that if Y is in equilibrium at some time t then Z at the0

first arrival after to is not in equilibrium.

All of these properties are important to the simulation methods used

23
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in Chapter 5 as we discuss in the summary to this chapter.

3.1. The Queue Length Process, Y, of the Three Queue Network.

Let JN = (N, A, m, v, 0) where:

(i) N 3;

(ii) x- (X, 0, 0);

(iii) m (1, 1, 1);

(iv) V ( l ' 2 9 PP)

(v)

8= 0 0

Then JN specifies the three queue network.

Let Y - {Yt; t > 0 be a stochastic process taking values in the

state space E - 1N x IN x IN, where IN - {0,1,- 1. Assume that Y is a

right continuous pure jump process with jumps of the following form. If

T > 0 is the time of a jump in the process Y and if Yr- (11 129 1 3),

then YT+ can take the values:

Mi (iI + 1, 1 21 1 3);

(ii) (11 - 1, 1.2 + 1, 13) provided iI ! I;

(iii) (1 -1, 12, 13 + 1) provided 11 > 1;

(iv) (iI, 12 - 1, 13 + 1) provided i 2> 1;

(v) (i1, 12, 13 - 1) provided i3 1.

The stochastic process Y defined above is the queue length process of

JN. It can be shown from Jackson (1957) that Y is a irreducible recur-

rent homogeneous Markov process.
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Suppose at time t, Yt U- (i 2P, Let T be the time from t

until the next jump of the Y process. Then

P {T > a) P P(AT > s, T > 9, T >sa, DT

where

P =}P{I u < t, -t

AT is the time from t until the next arrival toQ;

DiT is the time from t until the next departure from Qi 1 1,2,3.

Now,

P1{A T>s, D T>s, D T >s, D T>s) = P {A T>s)P {D> sjAT>s}

P { T>sD >aj SP D > DT aD T>s, A T>sa).

First,

P i{A T > s, =e-A

since the arrival process is Poisson with mean X-l. Second,

1 ifi1 =01

Pi{D T>sI T >s, >}1if12. (1.1)
1 2 1 le P if i f 1 2 >1

Pi{D T>sID T>s, DA>s) Ts f1 (1.2)

1 3 21 l e -P 3 ai f i > 1 .
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Equations (1.1), (1.2), and (1.3) are explained as follows. If ik 0,

k = 1,2,3, and the next arrival to Q is after t + a then there cannot

be a departure from Q until after t + s. If ik > 1, then the remaining

service time of the customer at Qk has exponential distribution with
-4

mean Pk" Thus,

-({ + p1 (i1 ) + 112 (12) + P3(i3PsPi{T >s} = e (1.4)

where

0 i=O

= for k = 1,2,3.

Ok 'k_

3.2. The Queue Length Process X.

It is shown below that the queue length process X, which is the

process embedded at jump points of Y, is a Markov chain. Its one step

transition probabilities are found, equation (2.1), which lead directly

to the infinitesimal generator of the Y process, equation (2.2).

Let T be the time of the nth jump of the Markov process Y. Itn

then follows that the process X - {Xn; n c IN} { {Y(Tn); n c IN) is a
n n

Markov chain (cf. inlar (1975) pg. 247, 254). Now

P{X+l = (i 1 +1, i2 P i 3) x- (i 1, i 2, i3))

-P{A<D 1 , A<D 2 , A<D 3 IXn= (i I , i 2 , i 3 )}

where A is the next arrival to Q, after Tn and Di is the next departure

from Qi, i-1,2,3, after Tn

n-. . .
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P{A <Dig A <D 2, A <D 3 1% (ill 129 i 3 ))

mEtP{A <Dip AD 2 9A<D 3 Xn W(ill i 2 9 i 3) A-t)IX n (il i 2 D i 3 )1

where y(i)- A+ I 1 1) +u 2(i2)+ U3(i3). In a similar manner the other

transition probabilities of X are found as:

yi(1 ) I (11+1, 1 j2  1

Y) 1 2

Qaqj) =(2.1)

112 (i 2 ) (i

YMi 2- = 1 2,31)

P3 (1 )

0 otherwise.

From Qinlar (1975, pg. 254) the infinitesimal generator of Y is

(-Y(i) if i

Mi4) -(2.2)

y&)~~) f104
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3.3. The Queue Length Process X

It is shown below that the queue length process, R, embedded at the

instants of jumps of a Poisson process independent of Y is a Markov chain

with the same invariant distribution as Y.

Let N e = {N e; t > 01 be a Poisson process with mean A- independent

of Y. Note that N e is not the exogenous arrival process to Q V The

following lemma shows that the process (Y,N e {YtIN e; t > 01 is a

Markov process on the state space E x IN.

Lemma 3.1. The process (Y,N e) [Yt9Ne t > 01 is a Markov process.

Proof. Pl iNeMi e jpy M, -Ne. kjY2N e ; U<t0

forYt=LNt=hmk-j

by the independence of Y and N e

. ly =jI= ~P {N e -N e =kNe=h
t+S ts NtkIth

since Y is Markov and N e Poisson

- P Y5  I Y0=AI P {N: e-N e - kIN e= h}
8 0 o

by the homogeneity of Y and N e

e ~ee

Let Ten be the time of the nth jump of Ne. It is apparent that Ten

is a stopping time of (Y,N e). Let Ik - fI;n c IN} -{Y (T n-); n c IN).

Then the following theorem shows that 2k is a Markov chain.



S
29

Theorem 3.2. {;n e IN {Y(T-1); n e IN) is an homogenous,

irreducible, recurrent Markov chain with transition matrix given by

X ~ -
P(i,j) AU (i=j) J e U (i~j)dt

for i,j e E, where XU (i,j) = A P(ij)e dt (inlar (1975) pg. 256).

Further, X and Y have the same invariant distribution.Proof. Pfx l  X. '-o,',X - -P{Y< ) hTT', h

-P {Y (T- J I (T0) - )

by the strong Markov property and homogeneity of Y

. li.j -io ).

Thus, X is a homogeneous Markov chain.

Since any state j is recurrent in Y, the amount of time spent in j

is infinite with probability 1, i.e., the set G {t; Yt 9 J) has

infinite length a.s. Therefore the number of Te that fall in G must alson4
be infinite. Thus, the number of times X= j is infinite a.s. So

is recurrent. A similar argument shows X is irreducible.

For any i j c E,

P(x1 = X jxi) - P(Y(T 1 - ) J YOui

fo 10
mj" P{Y[=IT - tY= i )dPT -t Y-i .

O {P t

since T1 and Y are independent

1r



30

-oPt (i, J)X ,-'dt

= (ij).

Thus, X has transition matrix defined by AU (iJ), where U is the A

potential of the process Y. It is known (cf. ginlar (1975) pg. 265) that

A - 0 iff AU X -V

where A is given by equation (2.2). Thus, Y and X have the same invariant

distribution. 0

3.4. The Z Process.

It is shown below that the Z process, which is the queue length

process embedded at arrivals to Ql, is a Markov chain, theorem (4.1). It

is also shown that the Z process and the X process have the same limiting

distribution, theorem (4.3).

Let N a = (Nt; t > 01 be the Poisson arrival process to QI, and let

Ta (Ta; n £ 14} be the sequence of arrival times. It is apparent
n

that, for each n c 14, Ta is a stopping time for Y. Let Z - {Z ; n £ 141n n

= {Y(Tn-a ); a F IN}. Thus, Z is the state of Y the instant before the nth

arrival to Q . It follows that Z is a Markov chain.

Theorem 4.1. Z - {Zn; n c 14) is an irreducible, homogeneous

Markov chain.

Proof. P{Zn+ I 9 Z,..Zn Mi}P{Y(T+)-JIY(To ,...,Y(T S) mi}

M P{Y(T 1 ~ -1IY(T 09 -i I

by the strong Markov property and the homogeneity of Y
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- P(z1- .z- ij.

Thus, Z is a homogeneous Harkov chain.

For any state j c E, the expected number of returns to j starting

from j is,

n-7 fi (( T 1a (Tn fyomi. E P{Y(T =~ T n cT'YO nil

by the monotone convergence theorem;

-E QJj
nwi

n
since, for all J c E, > 0 and j recurrent in Y implies ; QOjA)

n-i --

-.Thus, all states j are recurrent. Y irreducible implies that,

for all i,j c E, there exists an n c IN such that Q(i,j) > 0. Thus,

n
there is an n c IN such that Q(i,j)- > 0. Therefore Z is irreducible. 0

Theorem 4.2. The processes N aand N eare independent.

Proof. For any i,j e IN,

a a e)
P{Nt ui,Ntmj - E{l i(Nt)- 1 (N

- E(E~ (Na- 1 (Ne)IY; U < t}}
U) t 1) t u < )

since N8 is completely determined by {Y u <t)
t
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E{1 (N ))E{1 (N e),
(ii t {j)

since Ne is independent of {Y_; u < tI
t

t t

Theorem 4.3. P w{Z n= nPi{X -) where P {} E P{IYo W} i(i).n - W ice " ~

Proof. Let Ta {T} Te , {T:}, and Ta U Te{T} where

aa e a e
T1  min{T I  and T < T <*' Since N and N are independent

-1
Poisson processes each with mean A , it follows from ginlar (1975, pg.

87) that N, the superposition of Na and Ne, is a Poisson process with

mean (2A)-1 . Let Y Y(!;). Then
n n

P w{Ynn .V =P{y )Pn{l a(Tn )IYn J)+P w{Y n J}P { e(Tn )  n ={l)

ir l fW Tan n - rn - wr Te

since by construction of N, the nth jump of Y cannot be at both Ne and
a

N a.  By construction of N,

P {1*(T n J) " P1 e n) I in" J-  1/2.
T T

Thus, for all n,

r " n . Tzan ) )  P J", 1 (T-)

ff ( nml 1Ta( n 7rn - Ten

Since,

P I {lTaO)}= P (1(T n) } n 1/2,

if follows that,
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P Yn j 1T 6) P{Y - iTe (in)1}

Tr~ Tan 0 '

or

P vZ (z i P{X-in.). 0

As a consequence of this result it follows that Z and X have the

same invariant distribution.

3.5. A Nonequilibrium Distribution.

It is shown below that if the Y process is in equilibrium at some

time to and if Ta is the first arrival epoch after to, then P{Y(T a ) - i)n n

is not equal to the equilibrium probability. This result has implica-

tions to the way the system is simulated as discussed in the summary.

Suppose at to, Y is in equilibrium. Let T be the time of the next

arrival to Q1 " Define Y t to be the queue length in Q at time t. In

order for Y to be in equilibrium the instant before the next arrival to

for every i c , P{Yto < i) P[YT - i . For every sample path w,o

we have that Y1 W < yT1(w). Thus, for each i c I,
to T

{w; yl M < i) {w; YTI(w) <

- YT~w) i}.(51Therefore,

P{W; y t (to) <i} < P(W; YTI(M < 1).(51

In order for equation (5.1) to be an equality,

P((w; Y < i - (w; yt (M) < il) - 0.
I:~0  -

However, this implies that

* 1 _ _ _ _ _ _ _ _ _ _ _
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o ~ ~ ~ ~ 1 flw Y1w <i {w; Y '(W) > iji)

to t

>0 (w ()<i t;YlW +1

0•P({W; Y T (w) -C Yi ) n w; Y t i M = i+)

- ( e-Uit )P+l l-P) where p - X/Pi

> 0 for all t > 0, i c IN, a contradiction.

Thus,

P{W; Y t(w) < il < Pe(; YT!(W) < ii.
0  -

Therefore, if at to, Y is in equilibrium, then the distribution of Y at

T a is not the equilibrium distribution. This result makes intuitiven

sense, since between to and Tn! departures from Q1 can occur.

3.6. Summary.

In section (3.1) we showed that the queue length process, Y, of the

three queue network is an irreducible, recurrent, Markov process. Thus,

simulating the three queue network in equilibrium is done by simulating

the Markov process, Y, in equilibrium. The distribution of time spent

in a state is given by equation (1.4). In section (3.2) the transition

probabilities of the underlying Markov chain, X, of Y are developed,

equation (2.1). Equations (1.4) and (2.1) are important in constructing

the next event generator of the simulation, as will be shown in section

(4.4).

In section (3.4) it was shown that the queue length process embedded

CI
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at arrival epochs, Z, is a Markov chain with the same equilibrium

distribution as Y. In section (3.5) we showed that if Y is in

equilibrium at an arbitary time top then the queue length distribution

the instant before the next arrival to Q, is not the equilibrium

distribution. The results of section (3.4) and (3.5) are important in

initializing the simulation, as will be shown in section (4.2).



CHAPTER 4

THE SIMULATION APPROACH

4.1. Introduction.

In this section we will construct an efficient simulation of the

three queue network from which the correlation between S1 and S3 can be

correctly analyzed. In constructing such a simulation, we take

advantage of the properties of the Markov process, Y, developed in

Chapter 3. The method of initializing the simulation, discussed in

section (4.2) is correct, as well as, efficient. We force a tagged

customer to take the route QIQ 2 ,Q3 and calculate his sojourn times at

these queues. In section (4.3) why the tagged customer is forced to take

the route Q1 ,Q2 ,Q3 is discussed. After the tagged customer leaves the

network, we stop the simulation, reinitialize it, and run it again.

Also in section (4.3) we explain why the simulation is reinitialized

each time the tagged customer leaves the network. Finally, in section

(4.4) the simulator's next event generator is discussed. In that section

we use the results of section (3.2).

4.2. Initialization of the Simulation.

For each iteration of the simulation the queue length at each queue

is initialized according to the network's equilibrium queue length

distribution, equation (2.2.3). Thus, the initial distribution of

customers at each queue is geometric. For each i, i- 1,2,3, to generate

the initial queue length at Qi it suffices to use a geometric random

number generator with parameter p1 , where p1 - / 1  = p2/U2, and

P3 = /V3" In this simulation the geometric random number generator

36
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used is the IMSL routine GGEM.

One has two choices as to when to add the tagged customer to Q V

One can either add the tagged customer to QI and then start the simula-

tion or one can start the simulation, wait until an arrival to Q, is

generated, and let this arrival be the tagged customer. In section (3.2)

it was shown that the queue length process embedded just before arrivals

to Q1 9 Z, is a Markov chain with the same equilibrium distribution as Y.

Thus, it is sufficient to add the tagged customer to Q, and then start
the simulation. In section (3.5) it was shown that if at some time, to*

the network is in equilibrium, then the next arrival to Q, does not see

an equilibrium queue length distribution at Q1 " Thus, if one starts the

simulation and calls the next arrival to Q1 the tagged customer, then one

will not be simulating a network in equilibrium. Thus, it is necessary

and sufficient to add the tagged customer to Q and then start the

simulation.

4.3. Independence of Output and Customer Routing.

In section (4.1) it was stated that the simulation was reinitialized

each time a tagged customer left the network. So, for each tagged

customer, ci, in1,...,M, we are simulating a segment of a distinct

sample path, wi, of Y. Thus, if we take observations xI on wit

i-1,..-,M, the xi are mutually independent. Further, since each ci

sees Y in equilibrium at their arrival to Q1 9 the observations x are

identically distributed. The fact that the xi are observations on a

sequence of independent identically distributed random variables is

required to compute and to analyze the statistics of the simulation,
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Chapter 5.

The purpose of the simulation is to determine the correlation

between S1 and S3 given the tagged customer takes the route 41  QIQ 2Q3y

It can be shown from Simon and Foley (1979) that S1 and S3 are

independent given the customer takes the route £2 M QIQ3. Thus, we are

interested in only those tagged customers which take the route k1. By

forcing the tagged customers to take the route t1, the number of

iterations the simulation requires over the number of iterations the

simulation would require if we let the tagged customer choose which

path to take, is reduced. For example, for a sample of 1000 tagged

customers who take the route 41, in a network with switching parameter

p = .01, by forcing the tagged customers to take route L1 the simulation

requires only 1000 iterations. However, by not forcing the tagged

customers to take the route £1 the expected number of iterations the

simulation requires is 100,000.

4.4. Generation of the Next Event.

Let Tn, n c IN, be the time of the nth jump of the process Y and

X n; n c IN, be the state Y enters at Tn . Then from Vinlar (1975, pg.

247).

P{Xn+I-j, Tn+l-Tn > tIXo,..,X-n , To,"*,Tnl}Q(i,j)e- Y( 1 )t (4.1)

where Q(i,j) is given by equation (3.2.1) and e-y(i)t by equation (3.1.4).

It follows that the process X - {Xn; n E IN) is a Markov chain with

transition probabilities given by the Q(i,), see section (3.2). So the

next event is determined by the Markov chain X. Thus, to generate the
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type of the next event it suffices to generate a uniform random number,

r, such that:

(i) if 0 < r < the next event is an arrival to Q1;

y(+PlI ((i1

(ii) if - _<r< Y(,) the next event is a departure

from Q who goes to Q2;

(X+pV1 (il)) (,X+p (1 1))(iii) if ( I) < < _(i) the next event is a

departure from Q, who goes to Q3;

+ IA ( I )  X+ P 1 (1 l)+ 2 (12)
(iv) if < r < the next event is aY(i) Y(i)

departure from Q2 who goes to Q3;

A+P 1 U 1)+P 2 (1 2 )

(v) if (i) < r < 1 the next event is a departure

from Q3 who leaves the network.

The uniform random number generator used is the ISML routine GGUM.

Further, from equation (3.1), it follows that

P{T n+-T n > tIX ,-',X n - i, Xn+l - J, To,'',Tn I eYi)t.

Thus, if at the last event Y is in state i the time until the next event

is determined by an exponential distribution with mean y(i)- 1 . Thus, to

generate the time of the next event it suffices to use an exponential

random generator with mean y(i) -
. The exponential random number

generator used is the IHSL routine GGEXP.

A"A
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4.5. Summary.

In this chapter, important concepts of the construction of the

simulation were discussed. First due to the construction of the

simulation the data are independent and identically distributed. This

is necessary for the analysis done in the next chapter. Since the

equilibrium distribution of Y is known, the initial distribution of

customers can be calculated directly instead of by simulating the

network for a period of time to approximate an initial distribution.

Since we are trying to gather data concerning a customer's total sojourn

time distribution in a network in equilibrium it is essential that the

network be in equilibrium when the tagged customer arrives. In section

(4.2) it was explained when the queue length distribution was and was

not in equilibrium with respect to the arrival of the tagged customer.

Finally, since the queue length process is Markov, instead of creating

a large next event file one needs the transition probabilities and the

exponential distribution of time the process spends in state of E. Flow

charts, program listings, and program discriptions are listed in appendix

1.
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CHAPTER 5

ANALYSIS OF THE SIMULATION

5.1. Introduction.

For a given set of parameter settings we simulate the three queue

network of section (1.3). The simulation is run for 1000 iterations.

For each iteration, i, the network is initialized according to it's

equilibrium queue length distribution. Next, a tagged customer is

added to Q The simulation is run with all customers, except the tag-
1

ged customer, moving through the network according to it's parameter

settings. The tagged customer always takes the route Q1 ,Q2,Q3. The

sojourn times, S1,$2,$3, of the tagged customer in each queue, and his

total sojourn time TS are recorded. Once the tagged customer leaves
1

the network, an iteration of the simulation is complete. Details of this

procedure are found in Chapter 4.

For X = 4.0, pi - 5.0, i - 1,2,3, the simulation is run for p - 0.00,

0.01, 0.05, 0.10, 0.25, 0.50, and 1.00. For p - 1.00, we have a network

of three tandem queues. For this case, we should have that $1,$2, and S3

are mutually independent random variables, Reich (1963). For p = 0.01,

0.05, 0.10, 0.25, and 0.50, according to Simon and Foley (1979), section

(2.5), S1 and S3 are dependent. One purpose of this simulation study is

to determine how S1 and S3 are correlated for these values of p. For

p - 0.00 we are not simulating two tandem queues since the tagged

customer still takes the route Q1 ,Q2,Q 3 . For this value of p we are

trying to determine the correlation between S1 and S3 as p decreases to

zero.

41
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The analysis of the simulation consists of two parts. First, a

test is done to determine whether the correlation between S and S3 is

significant. Second, a test is run to determine whether the sample

distribution of the total sojourn time is different from one which sup-

poses that S1 and S3 are independent.

5.2. Analysis of Correlation.

The statistic used to determine the correlation of a customer's

sojourn times in Q and Q3 is the correlation coefficient. The correla-

tion coefficient is a descriptive index on two sets of data, (X,Y), the

value of which serves to specify the dependence exhibited by the data

between the variables X and Y. Mathematically the correlation coefficient,

r, between two sets of data (Xi,Yi) i = 1,-..,N is given by

= N / N N /N 2 N 2 N 2 N 2r lXiYi-( E X( X !E Y )IN)I1 Zx - Z iXI)( E -Yi2EYi)2IN).

The coefficient, r, must have the property that -1 < r < 1. A positive

value of r implies positive correlation, that is, a large value in X

implies a large value in Y. A negative value for r implies negative

correlation, that is, a large value in X implies a small value in Y. A

value of r = 0 implies that there is no correlation. This does not imply,

however, that X and Y are independent sets of data. However, a value of

r that is not zero implies that the data sets X and Y are correlated and

thus cannot be independent.

Let,

Xi be the sojourn time of the ith customer in Q.;

Yi be the sojourn time of the ith customer in Q2;
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Zi be the sojourn time of the ith customer in Q3;

r1 be the correlation coefficient between the data sets (XiYi);

r2 be the correlation coefficient between the data sets (Xi,Zi);

r3 be the correlation coefficient between the data sets (Yi,Zi).

In this section we will show that r1 and r2 are not statistically

greater than zero.

To test the hypothesis ri = 0, i = 1,2,3, Fisher's Z transformation

is used to change the correlation coefficient, ri, into a normal Z

statistic. This relationship is given by

l+r i
Z 1 1/2 ln(--r.).

i

The standard deviation of the Z statistic is given by

6z = 1//-n'-3.

Thus, our test of hypothesis becomes:

(i) H0: ri 0 i - 1,2,3 (null hypothesis);

(ii) H1 : ri 1 0 i - 1,2,3 (alternative hypothesis);

(iii) Critical region, a - .05;

(iv) Test statistic

l+r
Z - Z/6 Z a 1/2 In -r) 3

(v) Conclusion: Accept H° if Z < 1.96 otherwise accept H1.

A 1- a confidence interval for the Z statistic is given by the formula

7&-a



44

(Z- Z-/2 z+ z

To get the corresponding interval for the correlation coefficient insert

the left and right hand limits of the above interval into

e2Zl
e 2-lr= 2Z "e +1

For a = .05 if 0 does not lie in the interval one can be 95% certain that

r i is nonzero. If the interval is positive then one can be 95% certain

that ri is positive.

Since each run consists of 1000 observations, it follows that if

Iril > .062, 1 = 1,2,3, then the null hypothesis is rejected. To see

this, note that the null hypothesis is rejected if

l+ri  l+ri
Z < 1/2 ln(- n-3 or Z > -1/2 ln( -)/ 3

1-r1  l -r

Thus, we reject the null hypothesis if

l+rln( _-i ) > 2z1Vn=3.
1ri

So, we reject the null hypothesis if

l+ri 2Z/Yr-
-> e1-ri

or

2Z//n-3
r >2Z/ii-3
e +1

Inserting in Z - 1.96 and n - 1000 we obtain the desired result. The
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1 - a confidence intervals for a .05 are given by Z - .062 where

Z - 1/2 lnfl9r),(---

Putting the limit points of the above interval into

r e 2Z-l/e 2Z+1

yields the 1 - a confidence interval for r. The results of the tests

are listed in Table 2.1, Table 2.2, and Table 2.3.

From Table 2.1 the only significant correlations between sojourn

times in Q and Q2 oocur when p (the switching probability) takes the

values .01 and .05. In each case significant correlation occured for

just one of the five runs. From Table 2.2 there were no significant

correlations between sojourn times in Q2 and Q3. However, for all values

of p except .05 and 1.0 there were runs with significant correlation

between sojourn times in QI and Qy Since, for each case in which there

were runs of significant correlation there were also runs in which the

correlation was not significant further testing needed to be done.

To further test for significant correlation between the sojourn

times in Q1 and Q3 the same z-transformation test described above was

used with the following modification. Instead of testing the correla-

tion coefficient for each run separately the average over the five runs

was taken. For example, from Table 2.3 for p - 0.0 the new r value

would be

r - {.0582 + .0532 + (-.0209) + .07081/5 - .03226.

Note that the sample size of this test is n = 5000 rather than n 1 1000.

9,!
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TABLE 2.1

ANALYSIS OF CORRELATION BETWEEN QUEUE 1 AND QUEUE 2

p r Big. con. int.

0.00 -.0591 no (-.0121,.0029)
0.00 -.0237 no (-.0857,.0383)
0.00 .0030 no (-.0590,.0650)
0.00 -.0304 no (-.0924,.0316)
0.00 -.0187 no (-.0807,.0433)
0.01 -.0019 no (-.0639,.0601)
0.01 -.0759 yes (-.1378,-.0139)
0.01 -.0253 no (-.0873,.0367)
0.01 .0027 no (-.0593,.0647)
0.01 -.0435 no (-.1055,.0185)
0.05 -.0189 no (-.0809,.0431)
0.05 -.0177 no (-.0797,.0443)
0.05 .0123 no (-.0497,.0743)
0.05 -.0240 no (-.0860,.0380)
0.05 .0165 no (-.0455,.0785)
0.10 -.0225 no (-.0845,.0395)
0.10 .0061 no (-.0559,.0681)
0.10 .0295 no (-.0385,.0915)
0.10 -.0075 no (-.0695,.0545)
0.10 .0357 no (-.0263,.0977)
0.25 -.0431 no (-.1051,.0189)
0.25 .0288 no (-.0332,.0908)
0.25 -.0169 no (-.0789,.0451)
0.25 .0292 no (-.0328,.0912)
0.25 .0225 no (-.0395,.0845)
0.50 -.0499 no (-.1119,.0121)
0.50 -.0095 no (-.0715,.0525)
0.50 .0728 yes (.0108,1348)
0.50 -.0329 no (-.0949,.0291)
0.50 .0150 no t-.0470,.0770)
1.00 -.0604 no (-.1224,.0016)
1.00 .0206 no (-.0414,.0826)
1.00 -.0184 no (-.0804,.0436)
1.00 .0512 no (-.0108,.0512)
1.00 -.0432 no (-.1052,.0188)
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TABLE 2.2

ANALYSIS OF CORRELATION BETWEEN QUEUE 2 AND QUEUE 3

Pp r Big. con. int.

0.00 -.0260 no (-.088,.036)
0.00 -.0261 no (-.0881,.0359)
0.00 .0030 no (-.0650,.0590)
0.00 -.0193 no (-.0813,.0427)
0.00 -.0461 no (-.10811.0159)
0.01 .0061 no (-.0559,.0681)
0.01 -. 0431 no (-.1051,.0189)
0.01 -. 0200 no (-.0820,.0420)
0.01 -. 0294 no (-.0914,.0326)
0.01 -. 0267 no (-.0887,.0353)
0.05 -. 0027 no (-.0647,.0593)
0.05 .0023 no (-.0597,.0643)
0.05 -.0068 no (-.0688,.0552)
0.05 .0269 no (-.0351,.0889)
0.05 .0459 no (-.0161,.1079)
0.10 .0062 no (-.0558,.0682)
0.10 -.0343 no (-.0963,.0277)
0.10 .0067 no (-.0553,.0687)
0.10 -.0369 no (-.0989,.0251)
0.10 -.0285 no (-.0335,.0905)
0.25 .0237 no (-.0383,.0857)
0.25 -.0353 no (-.0973,.0267)
0.25 .0394 no (-.0226,.1014)
0.25 .0054 no (-.0566,.0674)
0.25 -.0205 no (-.0825,.0485)
0.50 .0198 no (-.0422,.0818)
0.50 .0174 no (-.0446,.0794)
0.50 -.0216 no (-.0836,.0404)
0.50 -.0217 no (-.0837,.0403)
0.50 -.0294 no (-.0326,.0914)
1.00 .0079 no (-.0541,.0699)
1.00 .0080 no (-.0540,.0700)
1.00 -.0144 no (-.0764,.0476)
1.00 -.0126 no (-.0746,.0504)
1.00 -.0434 no (-.1054,.0186)
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TABLE 2.3

ANALYSIS OF CORRELATION BETWEEN QUEUE 1 AND QUEUE 3

p r Big. con. int.

0.00 .0582 no (-.0038,.1202)
0.00 .0532 no (-.0088,.1152)
0.00 -. 0209 no (-.0829,.0411)
0.00 .0708 yes (.0088,.1328)
0.00 .0347 no (-.0273,.0967)
0.01 .0735 yes (.0115,.1355)
0.01 .0528 no (-.0092,.1768)
0.01 -. 0080 no (-.0700,.0540)
0.01 .0546 no (-.0074,.1166)
0.01 -. 0246 no (-08660,.03774)
0.05 .0599 no (-.0021,.1219)
0.05 .0651 yes (.0031,.1271)
0.05 .0616 no (-.0004,.1236)
0.05 .0085 no (-.0535,.0705)
0.05 .1034 yes (.0414,.1654)
0.10 .0252 no (-.0368,.0872)
0.10 .0439 no (-.0181,.1059)
0.10 .0308 no (-.0312,.0928)
0.10 -. 0314 no (-.0934,.0306)
0.10 .0400 no (-.0220,.1020)
0.25 -. 0310 no (-.0930,.0310)
0.25 .0023 no (-.0597,.0643)
0.25 .0520 no (-.0100,.1140)
0.25 .0758 yes (.0138,1378)
0.25 .0915 yes (.0295,1535)
0.50 -.0074 no (-.0546,.0694)
0.50 .0524 no (-.0096,.1144)
0.50 .0043 no (-.0577,.0663)
0.50 -.0182 no (-.0802,.0438)
0.50 .0252 no (-.0368,.0872)
1.00 .0140 no (-.0480,.0760)
1.00 .0427 no (-.0193,.1047)
1.00 -.0440 no (-.1060,.0180)
1.00 -.0111 no (-.0731,.0509)
1.00 -.0086 no (-.0706,.0534)
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TABLE 2.4

ANALYSIS OF CORRELATION BETWEEN QUEUE 1 AND QUEUE 3
WITH RESPECT TO THE AVERAGES OF THE RUNS

p r Sig. con. int.

0.00 .03226 yes (.0049,0603)
0.01 .02966 yes (.00196,.05736)
0.05 .05970 yes (.0320,08740)
0.10 .02170 no (-.0060,.04940)
0.25 .03812 yes (.01042,06582)
0.50 .00622 no (-.02148,.03392)
1.00 -.0014 no (.0291,0263)
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It follows from the formula that

r Zea_ z+1 a -21/n-3, Z -1.96

that if r > .0277 then the null hypothesis r3 - 0 is rejected. The

results of this test are listed in Table 2.4.

In the cases of p = 0.00, 0.01, 0.05, and 0.25 the tests show that

the correlation is significant. Further, the confidence intervals show

that correlation is positive in these cases.

5.3. Testing the Total Sojourn Time Distribution.

Let JN specify the three queue network, see section (3.1). Suppose

that for a customer, c, c's sojourn time in Q and Q3 are independent

given he takes the route QVQ 2,Q3. What would c's total sojourn time

distribution be? Let

-(t) P{S1 < t) - 1 - e- at where a l - ;

*2 (t) P{S2 <t i - e- b t where b - V2 -pX;

.3(t) = P{S 3 <t = I - e- c t where c - U3 - X.

Proposition 3.1. If the total sojourn times at the three queues

were mutually independent, which they are not, then the total sojourn

time distribution of a customer taking the route Q1,Q 2,Q3 where a - c,

a and c defined above, would be

P 1 - a2  -bt b2 +ba((b-a)t-2) -at
(b-a)2 (b-a)2
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Proof. From equation (2.3.3)

Pis 1 + s 2 + S3 , tILl (4 * 2 *3(t

We first evaluate

X It-xJ f3(t-x-y)42 (dy).

Let u t - x, then

0,t-xi I 3(t-X-y)f2(dy) - J~u.(uy)f(dy)

Jfou - a(uy) by dy

-e-bu + ba e-au [e-(ba)u]

a -bu b_ -au
m 1 + b-a) e (b-a)e

Thus, the total sojourn time distribution is

f tl +(ba a) b(t-x) _-( b a)e-a(t-x) ) -atd

2 -at 2
-icat +a e a -bt bat -at

e + - eb
(b-a) 2 (b-a)2 (ba)

a 2 -bt b 2 +ba((b-.at-2) le-at
21 e L[ 2 J

(b-a)2  (b-a)

is
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Figure (3.1) gives one graph of formula (3.1). We have superimposed

the corresponding distribution function of S + S2 + S3 on that graph.

Differences of the two plots appear to be minor, but one notes that the

tails are somewhat different. To further illustrate this discrepancy,

the difference between the two distributions is shown in figure (3.2).

It would appear from this, that the two distributions are not the same

but the differences are small. A Kolmogorov-Smirnov goodness of fit test

was run to try to substantiate the visual impression that the sample

total sojourn time of the simulation differs from the distribution given

by Proposition (3.1).

The Kolmogorov-Smirnov test depends on the statistic

Dn - sup IFn(x) - F(X)
--<X<

where Fn (x) is the sample distribution and F (x) is the distribution of

Proposition (2.1). If the null hypothesis is H0: Fo - Fn and the

alternative hypothesis is H1: F 0 F n . With a critical region of a,

a - .20, .15, .0, .05, .01, the null hypothesis is accepted if Dn < Da

otherwise it is rejected. For the case of large n, n > 80, D is given

by

a .20 .15 .10 .05 .01

D 1.07//n 1.14//n 1.27//n 1.36//n 1.63//n

For the case a - .05 and n - 1000, D - .04030. The result of this

test are listed in Table 3.1. For the case where a - .05 and p # 0 for

all runs, buy two, the null hypothesis was accepted. However, for the

case where p - 0.0 the null hypothesis was rejected three of the five runs.
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TABLE 3.1

ANALYSIS OF TOTAL SOJOURN TIME DISTRIBUTION

p D n Sig.

0.00 .0529 yes
0.00 .0256 no
0.00 .0441 yes
0.00 .0461 yes
0.00 .0255 no
0.01 .0281 no
0.01 .0258 no
0.01 .0392 no.
0.01 .0251 no
0.01 .0277 no
0.05 .0163 no
0.05 .0291 no
0.05 .0426 no
0.05 .0352 no
0.05 .0335 no
0.10 .0251 no
0.10 .0243 no
0.10 .0194 no
0.10 .0311 no
0.10 .0307 no
0.25 .0294 no
0.25 .0154 no
0.25 .0393 no
0.25 .0421 no
0.25 .0467 yes
0.50 .0325 no
0.50 .0341 no
0.50 .0513 yes
0.50 .0312 no
0.50 .0141 no
1.00 .0238 no
1.00 .0235 11o
1.00 .0200 no
1.00 .0401 no
1.00 .0293 no
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Thus, based on this Kolmogorov-Smirnov test, we are unable to verify

our visual impression. This is not conclusive evidence that the sample

distribution is different from the one assuming independence. However,

in view of the results obtained in section (4.1) one is led to believe

this is quite likely the case.

I



CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1. Summary.

Chapter 1 introduced the sojourn time problem. An informal defini-

tion of queueing networks was given, as well as, one for the three queue

network. Chapter 2 defined Jackson queueing networks and discussed many

of their known properties. The most important result concerning this

thesis is the Simon and Foley (1979) result in which the authors showed

that for the three queue network the sojourn time of a customer at Q1

and his sojourn time at Q3 are not independent.

Chapter 3 showed that the queue length process, Y, of the three

queue network is a Markov process. The infinitesimal generator, A, of

Y was found. The transition matrix of the underlying Markov chain was

determined, as well as, the distribution of time spent in a state.

Further, it was shown the Y process embedded at arrival instants to Q

is a Markov chain with the same equilibrium distribution as Y. Finally,

it was shown that if at time t Y is in equilibrium then Y will not be
0

in equilibrium at the time of the next arrival to Q1 "

In chapter 4 the simulation was constructed using the properties

of the Markov process Y. The simulation was constructed so that the

output was a sequence of independent identically distributed observa-

tions. The simulation was initialized so that the tagged customer saw

a network in equilibrium upon his arrival to QI" Finally, the next

event generator was constructed using the transition probabilities of

the underlying Markov chain of Y, together with the exponential distribu-
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tion of time Y spends in a state.

Chapter 5 consisted of the analysis of the simulation. A Fisher

Z test was run to determine whether the correlation between S1 and S3

was significant. For sample sizes of 1000 we found that the correlation

was not significant. A Kolmorgov-Smirnov test found that the sample

distribution of the total sojourn time was not significantly different

from one assuming that SI,$2, and S3 are mutually independent. Thus,

in applications one attempting to model such a network can do so assum-

ing independence.

6.2. Conclusions.

Simon and Foley (1979) show that there is correlation between S1

and S 2. The tests on the modified Z test in section (5.2) provided

evidence that the correlation is small, positive, and a decreasing

function of the switching parameter p. Further, graphs of the sample

distribution versus the distribution assuming independence show that

the sample distribution usually had more mass in its tails providing

more evidence that S1 and S3 are positively correlated, although the

differences were small enough to pass a Kolmorgov-Smirnov test on a

sample of size 1000.

6.3. Further Research.

Areas for further research fall into two main categories. First,

the simulation needs to be extended to more general acyclic networks.

From this extension one can determine whether or not the distribution

assuming independence can be substituted for the true, unknown distribu-

tion, for modeling purposes. Secondly, analyic work needs to be done to

71
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determine the correlation between sojourn times in Q and Q3' and more

importantly the total sojourn time distribution.

~ ii
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APPE1NDIX Al

THE COMPUTER PROGRAM

Al.0. Introduction.

In this appendix the simulation program is described. In section

(Al.l) a brief discription of the main program and each subprogram is

given. Section (Al.2) contains flowcharts of the programs. Section

(Al.3) contains source listings of the programs.

Al.l. Discription of Computer Routines.

1. Main Program.

The main program calls the subroutines used in the simulation.

2. Subroutine PAR1 and PAR2.

These two subroutines read in the parameters. The parameters

include (p,X,3I,3p2 ,P3), the number of iterations, the seed numbers plus

the dimensions of many of the vectors.

3. Subroutine INTL.

This simulation initializes the simulation's variables. The queue

lengths are initialized by the use of a geometric random number generator,

section (4.2). The tagged customer is added to the first queue and his

position in the queue recorded. The clock and the sojourn time variables

are initialized to zero.

4. Subroutine CHECK.

This subroutine checks the queue lengths of the three queues. For

i - 1,2,3, if the queue length at Qi is zero, then service rate at QI is

set equal to zero. Otherwise Qi's service rate is set to equal pi.
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5. Subroutine NEXT.

This subroutine generates the next event. Also it updates the

queue length vector, as well as, the queue and the position in the queue

of the tagged customer.

The time and the type of the next event are determined by two

random generators. The time of the next event is determined by

* :exponential random number generator. This time is added to the clock.

An uniform random is generated to determine the type of the next event.

Depending on the interval in which the number lies the type of the next

event is determined, section (4.3).

A subroutine depending on the type of the next event is called to

update the queue length vector, as well as, the queue and the position

in the queue of the tagged customer. The subroutines and their functions

are listed below.

5.1. Subroutine ARR.

This subroutine is called when the next event is an arrival to Ql.

This routine adds one to the queue length at Ql.

5.2. Subroutine DEPAB.

This subroutine is called when the next event is a departure from

Q1 who goes to Q2 " First, one is subtracted from Q1 and one is added to

Q2" If the tagged customer is in Q but not in service there, his

position in the queue is moved forward one. If he is in service at QI,

then he moves to the last position in Q2. His sojourn time at Q, is

set equal to clock.

5.3. Subroutine DEPAC.

This subroutine is called when the next event is a departure from



64

Q1 who goes to Q3' provided he is not the tagged customer. In this case,

one is deleted from Q and one is added to Q3' If the tagged customer is

in Q2, but not in service there, his position is moved forward one. If

the departure was the tagged customer, one is deleted from Q1 1 one is

added to Q2, and the tagged customer becomes the last customer in Q2"

His sojourn time is set equal to clock.

5.4. Subroutine DEPBC.

This subroutine is called when the next event is a departure from

Q2 who goes to Q3  One is deleted from Q2 and one is added to QV If

the tagged customer is in Q2, but not in service there, his position in

Q2 is moved forward one. If he is in service there, he moves to the end

of Q3 and his sojourn time in Q2 is calculated as clock minus his sojourn

time in Q1.

5.5. Subroutine DEPC.

If the next event is a departure from Q39 this subroutine is called.

One is subtracted from Q3 If the tagged customer is in Q3, but not in

service, his position in Q is moved up one. If the tagged customer is

in service at Q3. his sojourn time at Q3 is calculated as clock minus

the sum of his sojourn times in Q, and Q2. The total sojourn time is

calculated as clock. An iteration of the simulation is completed.

6. Subroutine STAT.

This subroutine calls the IMSL routine, BECORI, which determines

the expected sojourn time and the variance in each queue. It also

calculated the matrix of correlation coefficients.

7. Subroutines GRPH1 and GRPH2.

GRPH1 plots the logs of the tagged customer's sojourn times in Q1

7,
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versus the logs of their sojourn time~ in Q3. GRPH2 plots the sample

distribution versus the distribution assuming independence, section

(5.2).

NON
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Al.2. Flowcharts.
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A1.3. Program Listings.

1. Definition of Variables.

1.1. Network Parameters.

P - the switching probability.

A - the arrival rate to Ql"

U - a three dimensional vector where U(i), i 1,2,3, is

the service rate at Qi"

DU - a three dimensional vector where DU(i), i - 1,2,3, is

either 0 or U(i) depending on whether Q(i) is empty or

not.

1.2. Seed Numbers.

ISA - seed for generating initial queue length at Q,.

ISB - seed for generating initial queue length at Q2"

ISC - seed for generating initial queue length at Q3

ISD - seed for generating the time of the next event.

ISE - seed for generating the type of the next event.

1.3. Network Variables.

IQL - a three dimensional vector, where IQL(i), i- 1,2,3,

is the queue length at Qi.

LT - a two dimensional vector, where LT(l) is the queue

of the tagged customer, and LT(2) is the tagged

customer's position in the queue.

SOJ - a three dimension vector, where SOS(i), i - 1,2,3,

is the tagged customer's sojourn time in Q V

TSOJ - the tagged customer's total sojourn time.
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CLOCK - running time of the customer's sojourn time in the

network.

IFLAG- tells the simulation when the last tagged customer

leaves the network by going from zero to one.

1.4. Statistical Variables.

Z - a (1000 x 4) dimension array where Z(i,j),

i - 1,...,1000, is the ith tagged customer's total

sojourn time.

XM - 4 dimensional vector where XK(i) is the expected value

of z(.,i), i - 1,.--.,4.

S - 4 dimension vector where S(i) is the variance of

Z(',i), I - ,'4

2. Program Listings.

On the following pages are listings of the computer routines.

0
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APPENDIX A2

THE OUTPUT OF THE SIMULATION

A2.1. Listings of the Output.

The following pages consist of the simulations output. There are

four tables and 15 graphs. Table 1.1 consists of the seed numbers and

the correlation coefficients. Table 1.2 consists of the seed numbers

used in the random number generators. Table 1.3 consists of the

expected values of the sojourn times in Q1,Q 2 ,Q3 and the total sojourn

time. Table 1.4 consists of the standard deviations of the sojourn

times in Q1,Q2 ,Q3, and the total sojourn time. There are five graphs

in which the sample distribution and a distribution of the total sojourn

time, assuming S1,S2, and S3 are independent, are superimposed. There

are five graphs which plot the difference between these two

distributions. Finally, there are five scatter plots which plot the

log S1 vs. log S All plots are for the case where the switching

parameter, p, is .1.
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TABLE 1. 1

LIST OF SWITCHING PARAMETERS, p, AND CORRELATION COEFFICIENTS

run # prIr r3

1 0.00 -. 0591 -. 0260 .0582
2 0.00 -. 0237 -. 0267 .0530
3 0.00 .0030 -. 0421 -. 0210
4 0.00 -. 0304 -. 0193 .0708
5 0.00 -. 0187 -. 0461 .0341
6 0.01 .0027 -. 0219 .0546
7 0.01 -. 0019 .0061 .0735
8 0.01 -. 0758 -. 0436 .0528
9 0.01 -. 0273 -. 0199 -. 0080

10 0.01 -. 0435 -. 0261 -. 0247
11 0.05 -. 0189 -. 0027 .0599
12 0.05 -. 0176 .0023 .0651
13 0.05 .0123 -. 0068 .0616
14 0.05 -. 0240 .0269 .0085
15 0.05 .0162 .0456 .1034
16 0.10 -. 0226 .0062 .0252
17 0.10 .0065 -. 0343 .0308
18 0.10 .0295 .0070 .0439
19 0.10 -. 0075 -. 0368 -. 0317
20 0.10 .0357 .0399 -. 0029
21 0.25 -. 0431 .0236 -. 0310
22 0.25 .0288 -. 0354 .0023
23 0.25 .0394 -. 0169 .0520
24 0.25 .0292 .0054 .0758
25 0.25 .0225 -. 0205 .0915
26 0.05 -. 0150 .0294 .0252
27 0.05 -. 0329 -. 0217 -. 0182
28 0.05 .0728 -. 0216 .0040
29 0.05 -. 0092 .0174 .0524
30 0.05 -. 0499 .0198 -. 0074
31 1.00 -. 0432 -. 0435 -. 0089
32 1.00 .0051 .0168 -. 0111

*33 1.00 -. 0184 -. 0144 -. 0440
34 1.00 .0206 -. 0081 .0403
35 1.00 -. 0604 -. 0079 .0140
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TABLE 1.2

LIST OF SEED NUMBERS FOR THE RANDOM NUMBER GENERATORS

run # ISA ISB ISC ISD ISE

1 5686505 6075695 9022909 6656611 7408799
2 3886767 4756481 7698813 6095261 3997223
3 5774081 6769993 8314997 4583415 3793763
4 9459553 3632017 1859429 9434227 3283261
5 7119413 1866371 5532247 7646823 8976881
6 9396535 4884063 2084713 6525565 6646201
7 4934033 6004515 6827285 8503051 5691217
8 7134157 1256655 2635885 6435093 4113511
9 4968463 1798315 8597729 4610481 6765833

10 1505321 3159501 5390073 2217837 1478013
11 4439443 9161075 7560147 9990439 7966695
12 1063411 3370395 5594455 9690947 8042825
13 4250833 3061375 9274763 1829629 9609691
14 1558555 2997589 3515635 3618813 3469395
15 1859363 2855199 2562553 5072091 6784469
16 9396535 4401349 5218021 6118865 5815067
17 4934035 6004517 3001501 7158585 3580603
18 7134157 1256659 2151127 2349565 4655741
19 4968461 1798313 9773585 5185147 5000167
20 9065515 3159501 4944253 5919325 7679713
21 3947547 1662251 7498871 4349879 1795951
22 3699067 9352671 2316749 1740353 8702517
23 4098007 2049239 2379215 2363227 2650441
24 8397429 4153539 5900995 7047717 9820971
25 4694981 6631119 2669459 9243109 6357417
26 2205089 7295829 8592233 2740853 4753903
27 8319733 8394441 4241653 2401025 6133701
28 9932451 3911789 4658309 8390317 6062737
29 3193527 1111339 9254679 5418397 4142617
30 8872083 3333931 6552091 4255979 4397211
31 2669567 9496487 3413679 1538715 5575893
32 6988261 6568043 6992771 6564817 1627501
33 6590997 5266761 3120439 1707527 8778567
34 4005567 5541763 9081617 1229307 6565111
35 2707235 6300393 1497293 2839511 1214349
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TABLE 1.3

LIST OF EXPECTED SOJOURN TIMES IN Q1IQ 2 ,Q 3 v AND TOTAL SOJOURN TIME

run # ES1  ES2  ES3  ETS

1 .969 .194 .958 2.121

2 .99i .208 .956 2.154

3 1.039 .206 1.022 2.267

4 .982 .201 .955 2.139

5 1.020 .197 .954 2.172

6 1.000 .199 .951 2.150

7 .995 .198 1.022 2.216

8 .978 .199 .930 2.107

9 1.030 .198 .987 2.216

10 1.027 .197 1.026 2.250
11 1.037 .206 .982 2.224

12 1.017 .211 1.041 2.269

13 1.015 .204 .990 2.210

14 1.025 .203 1.057 2.285

15 .978 .208 .988 2.174

16 1.018 .220 .994 2.231

17 .977 .219 1.039 2.235

18 .998 .228 1.002 2.229

19 .969 .215 .951 2.135
20 1.004 .208 1.034 2.246

21 .974 .244 .980 2.120
22 1.023 .259 .972 2,254

23 .994 .237 1.021 2.251

24 1.032 .247 1.007 2.229

25 .956 .233 .948 2.137

26 1.019 .340 1.013 2.373

27 .997 .322 1.057 2.376

28 .992 .322 .937 2.250

29 .976 .337 .959 2.271

30 1.019 .351 .959 2.233

31 .958 .999 1.012 2.969

32 .999 .960 .997 2.957

33 .954 .973 1.024 2.951

34 1.011 1.005 .944 2.960

35 .950 .978 .987 2.915
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TABLE 1. 4

STANDARD DEVIATIONS OF THE SOJOURN TIMES IN QI239AND THE
TOTAL SOJOURN TIME

1 .989 .190 .949 1.411
2 .955 .204 .922 1.371
3 1.008 .190 .971 1.393
4 .979 .193 .973 1.435
5 1.024 .189 .946 1.422
6 .946 .186 .967 1.398
7 1.011 .202 1.035 1.513
8 .940 .199 .918 1.347
9 1.026 .193 .954 1.403

10 1.008 .194 1.016 1.418
11 1.039 .203 .938 1.452
12 .966 .213 1.008 1.455
13 1.079 .204 1.024 1.547
14 1.024 .207 1.003 1.455
15 .944 .202 .979 1.450
16 .991 .216 .953 1.406
17 .991 .217 1.019 1.455
18 .986 .230 1.074 1.512
19 .991 .220 .927 1.347
20 1.001 .227 .969 1.444
21 .988 .242 .977 1.385
22 1.064 .257 .950 1.451
23 .977 .238 1.081 1.516
24 1.037 .242 1.004 1.522
25 .946 .237 .948 1.420
26 1.028 .323 1.023 1.507
27 1.032 .328 1.021 1.463
28 1.042 .313 .952 1.460
29 1.006 .336 .929 1.447
30 1.050 .352 .938 1.438
31 1.001 .971 1.021 1.673
32 .977 .910 1.035 1.678
33 .970 .939 .973 1.620
34 1.082 1.015 .968 1.803
35 .933 .972 .975 1.633
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